

Wysyłanie alarmowego SMS'a przez sterownik PLC z możliwością zmiany numeru w czasie rzeczywistym

Informator Techniczny Teltonika nr 4

07.11.2019 r.

UWAGA!

Przed przystąpieniem do konfiguracji należy pamiętać:

- 1) Przedstawiona poniżej instrukcja jest jedynie przykładem konfiguracji. Wszystkie parametry (adresy IP, maski podsieci, APN, itd.) należy przystosować do własnej konfiguracji sprzętowej.
- 2) W programie sterownika wykorzystane będzie hasło dostępu do routera. Pamiętaj, aby ograniczyć dostęp do tej części programu tylko powołanym użytkownikom oraz wykorzystaj zabezpieczenie za pomocą silnego hasła.

Dodatkowe informacje:

- Zaleca się aktualizację Firmware do najnowszej dostępnej wersji dla danego urządzenia (dostępne na: <u>https://wiki.teltonika.lt/view/Network_products</u> lub przez WebUI routera w zakładce system -> Firmware)
- Instrukcja podstawowej konfiguracji routera znajduje się w Informatorze Technicznym Teltonika nr 1
- W przykładzie wykorzystano sterownik PLC Horner XL4e. Do komunikacji z routerem wymagany jest port RS-232 lub RS-485.

KONFIGURACJA ROUTERA RUT955

Zaloguj się do WebUI. Przejdź do zakładki Services -> RS232/RS485. Włącz funkcję w trybie "Console". Parametry komunikacji muszą być jednakowe dla wszystkich połączonych urządzeń.

RS232 Configuration

RS232 Serial	Configuration
--------------	---------------

Enabled	Y
Baud rate	9600 ~
Data bits	8 ~
Parity	None 🗸
Stop bits	1 ~
Flow control	None ~
Serial type	Console ~
Echo	

KONFIGURACJA STEROWNIKA PLC

Otwórz port szeregowy z odpowiednimi parametrami.

- Clabel Ol	wieranie_portu:		
ALV_ON	[OPEN]
*\$\$007	MJ1- 9600- None- 8- 1- Generic- RS-232-	PORT Baud Parity Data Bits Stop Bits Handshake Protocol Mode	

Upewnij się, że bity "trigger" do połączenia się z routerem i wysłania wiadomości to cewki wykrywające zbocze narastające.

15 Contraction Label Trigger:	
16 Przycisk_1	(i)
11_ %Q0001	%Q0010
17 Przycisk_2	(P)
12%Q0005	%Q0020

Przygotuj zmienną przechowującą numer telefonu odbiorcy. Potrzebne będzie 9 bajtów – po 1 bajt na cyfrę.

W trybie programowania panelu operatorskiego stwórz obiekt "ASCII Data". Podepnij powyższą zmienną do obiektu, określ długość tekstu na 9 liczb oraz umożliw edycję.

×

ASCII Data FIOPEIties

Controller Register	
Data Source: Internal reg	isters 💌
Address: %R00500	▼ > Register Width: 8-Bit ▼
Name: numer_SM	s 🔽
Data Format	
Justification	Font:
Digita	bx/Font
9 ÷	
	nken
Display Properties	
Attributes >>>	Background Color >>>
Legend >>>	Line Color >>>
Access>>>	Data Color >>>
Display Style : Classi	c Stule
,	
	OK Cancel

Numer								
		_ XXXX	XXXXX	i				

KOMUNIKACJA Z ROUTEREM I WYSYŁANIE WIADOMOŚCI

Połączenie z routerem można podzielić na 3 kroki: wpisanie loginu, odczekanie na reakcję routera oraz wpisanie hasła.

- Do logowania użyj loginu "root". Zatwierdzenie wpisanego tekstu kończy znak Carriage Return, czyli "\$R". Długość wpisanego tekstu zawsze będzie taka sama, więc wyślij 7 bajtów na port szeregowy. 'root\$R'
- 2. Odczekaj sekundę. Za pomocą Timer'ów prześlij stan wysoki tylko przez jeden kwant czasu (działanie podobne do zbocza narastającego Triggera).
- 3. Prześlij hasło na port szeregowy. Długość hasła może się zmienić, dlatego ilość wysłanych bajtów uzależniona jest od długości tekstu. '*TwojeHasło\$R*'

	Label Logowanie_w_tr	ybie_konsoli:									
19 ⊘		SEND MJ1-PORT	1	TOF %R00017 0.001s	0.001s 2			LEN STR	MJ1 -	SEND PORT	3
20	"root\$H" – SHC DEST – %R0"	7-Bytes dem init_modem 1500 %R01500-Data TX Count	-%R01450	999-PT	1000-PT	 DEST	init_modem -%R01500	KHU15UU-SHC	%R01550- init_moden +%R01550 %R01500-	Bytes Data TX Count	t-%R01450
	/-1N					 13 - N					J

Wysyłanie alarmu również można podzieilć na 3 kroki: wpisanie komendy odpowiedzialnej za wysłanie SMSa, wpisanie numeru telefonu oraz wpisanie treści wiadomości. W tym przypadku router musi otrzymać komendę jako całość, aby dobrze ja zinterpretować. Znak "\$R" znajdzie się na końcu ciągu znaków – po zakończeniu treści wiadomości.

- Wpisz komendę oraz otwórz cudzysłów (postać całej komendy wygląda następująco: gsmctl –S –s "<NUMER> <WIADOMOŚĆ>"). Długość wpisanego tekstu zawsze będzie taka sama, więc wyślij 16 bajtów na port szeregowy. 'gsmctl -S -s "'
- 2. Wyślij rejestr zawierający numer odbiorcy SMSa. Długość wpisanego tekstu zawsze będzie taka sama, więc wyślij 9 bajtów na port szeregowy.
- 3. Wyślij tekst wiadomości. Długość wiadomości może się zmienić, dlatego ilość wysłanych bajtów uzależniona jest od długości tekstu. ' *test alarmu*"\$*R*'

22 			_			
23 MOV SEN 0 I I STR MJI-POF 16 200020 MJI-POF	D 1	SEND 2		MOV STR	LEN	MJ1-PORT 3
24 "gsmctlSRC 16- Byte DEST-%R01600 %R01600-Dat	s	9-Bytes numer_SMS %R00500-Data		' test al SRC DEST-%R01700	**************************************	%R01790- Bytes msg_test_2 %R01790 %R01700- Data
25 16-N	TX Count-%R01550	TX Count-%R01560		16- N		TX Count-%R01570

Przetestuj wysłanie wiadomości na swoim numerze telefonu. W przypadku problemów przetestuj wysyłanie i odbieranie komend dla obu urządzeń za pomocą monitora portu szeregowego.

